2 resultados para variability

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of biologics production, productivity and stability of the transfected gene of interest are two very important attributes that dictate if a production process is viable. To further understand and improve these two traits, we would need to further our understanding of the factors affecting them. These would include integration site of the gene, gene copy number, cell phenotypic variation and cell environment. As these factors play different parts in the development process, they lead to variable productivity and stability of the transfected gene between clones, the well-known phenomenon of “clonal variation”. A study of this phenomenon and how the various factors contribute to it will thus shed light on strategies to improve productivity and stability in the production cell line. Of the four factors, the site of gene integration appears to be one of the most important. Hence, it is proposed that work is done on studying how different integration sites affect the productivity and stability of transfected genes in the development process. For the study to be more industrially relevant, it is proposed that the Chinese Hamster Ovary dhfr-deficient cell line, CHO-DG44, is used as the model system.